Mar 14 2011

Shaken Awake – and new terrain product

The enormously tragic megathrust event east of Honshu island in Japan has been in my thoughts throughout the weekend.   It is natural to focus on the human loss and images of civic destruction; I’ve got little to add to that story.

When I saw the first news items, it was already Friday morning and eight hours past the event.  My concerns were for Hawaii and the arrival of a tsunami.  I was shocked by the energy released, as reported at NEIC:  Mo=3.9×10^22 Nm,  Mw=9.0 — for as many earthquakes as have been recorded and studied in Japan, this was a much larger event.  For disaster planning, that is Not A Good Thing.

Moment Tensor USGS/WPHASE  Mo=3.9x10^22 Nm

The beach ball diagram shows compression back up the thrust. Depth of event is 24km

While there was some concern for Hawaii, there is something to be said for the diffraction caused by the long line of seamounts extending northwesterly from the big island.  While the energy won’t be cancelled out, the height of the crest would be widened some.  By the time the tsunami reached California, it was a real concern and a literal wake-up call for emergency workers.  Our damage here was mostly an economic annoyance, with Del Norte county once again taking the brunt of the damage in Crescent City harbor.

With a check-in call to relatives in Hawaii saying everything OK, their eyes and mine turned towards Japan.  As I watched shocking videos of tsunami damage, I struggled to calibrate what I was seeing with my mental model of how fragile most human habitation structures are.  I’ve thought much about the effects of shaking, liquefaction, and occasionally about wildland fire.  I’ve read about losses in Marin county during 1982 flooding where debris flows destroyed houses or literally rolled them end-over-end down a slope.  I’d seen some videos from near Sumatra of debris flowing up streets after waves climbed up the beach.  Yet images from Japan recorded damage unfolding at an entirely worse scale.

My concern became much more engaged when I saw helicopter video of the south end of nuclear power reactor facility Fukushima Daiichi (No. 1).  You see, in the video clip I recognized not the reactor, but the cut slope behind it.  In a very strange sense of model-based deja vu, my memories were unequivocal: “I know that place!”.

Why?  Because about 17 or 18 years ago, I was fortunate to be part of a site design project for the (still yet to be constructed) Unit 7 and Unit 8 reactors.  Fortunate for me, because it was a first opportunity to learn not just ESRI Arc/INFO, but how to work with Bentley CAD software to create a 3D cut slope design.  My small contribution was to create a realization of slope that was  not simply faceted as a buffer surrounding the building footprints, but instead create a semblance of the natural cliff slopes  adjacent to the plant, while meeting the engineering requirements for not-to-exceed slope steepness, and a more natural-looking accumulation of drainage from the slope.

So apparently, after spending a couple of weeks learning to use 3D design software and creating a design that extended the existing cut farther southward, I had an image of the plant, its cliffs, and the breakwater that guided cooling water that stuck with me.  After having the flash of recognition with the video, I opened up Google Maps and found the site on my first inward zoom.  It was a bit spooky.

So now when I watch coverage of hydrogen venting that leads to building explosions, I feel a curious terrain-based sense of connection with the site.  I wish them well, and the safest possible return to production.  The TEPCO power is needed by many people.

And more ominous for the Pacific Northwest, I can’t help but reflect on what a similar megathrust event would mean for Cascadia.  Both Portland and Seattle would be in some sort of peril, although I don’t have a clear understanding of how tsunamis are modeled for either lower Columbia River or for Puget Sound.  But the possibility of a 9.0 megathrust event along the Cascadia subduction zone was a whole lot more abstract for me until last Friday.  It may not be the best time to reflect on it now while Japan is suffering—but the risk to the northwest has been a matter of public record for several years now and it not the time to forget that, either.  An event of that size and location would have tsunami implications both locally, and perhaps a far greater risk for windward Hawaii.

—————-<>—————-

Closer to home,  this past week we’ve created a prototype 3D product that provides a facsimile of our 45cm terrain model—imported to Google SketchUp 8 with a georeferenced orthophoto texture on the terrain.  Things are not fully tuned up yet, but we are able to take TIN and decimated TIN surfaces out of ArcGIS 10, by way of clipping polygons that are interpolated to multipatch (3D multi-polygon features) and then exported to Collada with a KML point for georeference.  The Collada can be imported to SketchUp, at least up so some limit of detail.  Once there, I’m trying now to find the right way to smooth the facets and improve the rendering of the surface without having high-contrast dark facets—because the orthophoto textures are arriving intact and draping over the surface.  Only at the moment, many black facets are covering up almost half of the orthophoto in an aggravating triangular patchwork.

Next step: smoothing within SketchUp.

And inspiration from others who have gotten gridded terrain into SketchUp.

No responses yet

Trackback URI | Comments RSS

Leave a Reply

You must be logged in to post a comment.